skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Islam, Mohammad Jaminur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 4, 2026
  2. This paper studies online resource allocation with replenishable budgets, where budgets can be replenished on top of the initial budget and an agent sequentially chooses online allocation decisions without violating the available budget constraint at each round. We propose a novel online algorithm, called OACP (Opportunistic Allocation with Conservative Pricing), that conservatively adjusts dual variables while opportunistically utilizing available resources. OACP achieves a bounded asymptotic competitive ratio in adversarial settings as the number of decision rounds T gets large. Importantly, the asymptotic competitive ratio of OACP is optimal in the absence of additional assumptions on budget replenishment. To further improve the competitive ratio, we make a mild assumption that there is budget replenishment every T* ≥ 1 decision rounds and propose OACP+ to dynamically adjust the total budget assignment for online allocation. Next, we move beyond the worst-case and propose LA-OACP (Learning-Augmented OACP/OACP+), a novel learning-augmented algorithm for online allocation with replenishable budgets. We prove that LA-OACP can improve the average utility compared to OACP/OACP+ when the ML predictor is properly trained, while still offering worst-case utility guarantees when the ML predictions are arbitrarily wrong. Finally, we run simulation studies of sustainable AI inference powered by renewables, validating our analysis and demonstrating the empirical benefits of LA-OACP. 
    more » « less